9-1. Подъём воды. В цилиндрический сосуд, площадь дна которого $S=100~{\rm cm}^2$, налита жидкость плотностью ρ_0 . На какую высоту Δh поднимется уровень жидкости в сосуде, если в него опустить тело объёмом $V=50~{\rm cm}^3$, изготовленное из материала, плотность которого $\rho=0.8\rho_0$? Тело не касается стенок и дна.

Возможное решение

Поскольку $\rho = 0.8\rho_0 < \rho_0$, тело плавает. Значит, сила Архимеда равна силе тяжести:

$$F_A = mg = \rho Vg = 0.8 \rho_0 Vg$$

С другой стороны, сила Архимеда равна весу вытесненной воды:

$$F_A = \rho_0 V_{BMT} g$$

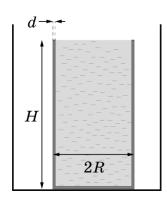
Уровень жидкости поднимается за счёт вытесненного объёма, значит для уровня подъёма: $\Delta h = \frac{V_{BЫT}}{S} = \frac{0.8V}{S} = 0.4$ см .

Критерии оценивания

1) Сделан обоснованный вывод о плавании тела		
2) Найден объём вытесненной воды (численно или «формульно»)	3 балл	
3) Сделан обоснованный вывод о причине подъёма уровня воды	2 балл	
4) Получено правильное выражение для Δh	2 балл	
5) Получено правильное численное значение Δh	1 балл	

Примечания:

- 1) Правильное решение неавторским способом оценивается полным баллом.
- 2) Если в решении отсутствует отдельно какой-то из промежуточных критериев, но его выполнение подразумевается в дальнейшем ходе рассуждений, то этот пункт засчитывается в полном объёме.


9-2. Ледяной стакан. В калориметр помещён цилиндрический стакан, изготовленный изо льда и находящийся при температуре t=0 °C. В этот стакан наливают до краёв воду (см. рис.). При какой минимальной начальной температуре воды t_0 ледяной стакан полностью растает?

Размеры стакана: R = 90 мм, H = 330 мм, d = 4,2 мм (толщина стенок и дна).

Плотность воды $\rho_B = 1.0 \text{ г/см}^3$, плотность льда $\rho_{\pi} = 0.9 \text{ г/см}^3$.

Удельная теплота плавления льда $\lambda_{II} = 330 \text{ кДж/кг.}$

Удельная теплоёмкость воды $C_B = 4200 \, \text{Дж/(кг} \, ^{\circ}\text{C}).$

Возможное решение:

Найдём объём льда как сумму объёмов дна и стенок стакана. Учтём, что d << H и R.

$$V_{\pi} = d(\pi R^2 + 2\pi RH).$$

Умножим полученное выражение на $\rho_{\rm Л}$, и получим массу льда:

$$m_{\pi} = d(\pi R^2 + 2\pi RH)\rho_{\pi}$$

Объём воды найдём как объём цилиндра; так же учтём, что d << H и R.

$$V_{R} = \pi R^{2}H$$

Умножим полученное выражение на $\rho_{\rm B}$, и получим массу воды:

$$m_B = \pi R^2 H \rho_B$$

Теплоты, выделяющейся при охлаждении воды, должно хватить на расплавление всего льда. Минимальная начальная температура означает, что конечная температура воды 0° C.

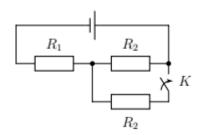
Составим уравнение теплового баланса для плавления льда и охлаждения воды до 0°C:

$$m_{\mathcal{I}}\lambda_{\mathcal{I}} = C_{\mathcal{B}}m_{\mathcal{B}}(t_0 - 0^{\circ})$$
 [1]

$$d(\pi R^2 + 2\pi RH)\rho_{\pi}\lambda_{\pi} = C_B\rho_B\pi R^2 H(t_0 - 0).$$

Выразим t_0 :

$$t_0 = \frac{\rho_{\pi}}{\rho_{R}} \frac{\lambda_{\pi}}{C_{B}} \frac{(R+2H)d}{RH} = 7,5$$
°C.


Критерии оценивания:

1)	Правильно найден начальный объём льда		
2)	Правильно найден начальный объём воды	1 балл	
3)	Записана связь между массой и объёмом $m = \rho V$	1 балл	
4)	Явно обосновано условие минимальности начальной температуры	1 балл	
5)	Правильно записано уравнение теплового баланса [1]	2 балла	
6)	Получено правильное выражение для t_0	2 балла	
7)	Получен правильный численный ответ	1 балл	

Примечания:

- 1) Правильное решение неавторским способом не является поводом для снижения оценки.
- 2) Если в решении отсутствует отдельно какой-то из промежуточных критериев, но его выполнение подразумевается в дальнейшем ходе рассуждений, то этот пункт засчитывается в полном объёме. Исключением является пункт 3: условие минимальности начальной температуры должно быть прописано!
- 3) Правильный расчёт объёмов льда и воды без использования приближения d << H и R не является поводом для снижения оценки.

9-3. Мощность на резисторе. При замыкании ключа K в цепи, схема которой приведена на рисунке, мощность, выделяющаяся на резисторе R_1 , увеличивается в 2 раза. Чему равно отношение R_2/R_1 ? Батарейку считать идеальной.

Возможное решение

Мощность, выделяющаяся на R_1 , равна $P_1 = I_1^{\ 2} R_1$. Сила тока I_1 через R_1 равна силе общего тока. Сила общего тока $I_1 = \frac{U_0}{R_0}$. Напряжение U_0 идеальной батарейки постоянно. Полное сопротивление цепи R_0 .

До замыкания $R_{01} = R_1 + R_2$

После замыкания $R_{02} = R_1 + R_2/2$

Так как после замыкания P_1 возросла в 2 раза, то I_1 увеличилась в $\sqrt{2}$, что произошло благодаря уменьшению R_0 в $\sqrt{2}$.

A значит, $R_1 + R_2 = \sqrt{2} (R_1 + R_2/2)$.

Поделим всё на
$$R_1$$
: $1 + \frac{R_2}{R_1} = (1 + \frac{1}{2} \frac{R_2}{R_1}) \sqrt{2} \rightarrow \frac{R_2}{R_1} = \sqrt{2}$

Критерии оценивания

1)	Правильная	связь мощ	ности с силой тока	$P_1 = I_1^2 R$	1 6	алл
----	------------	-----------	--------------------	-----------------	-----	-----

2) Указано, что ток
$$I_1$$
 через R_1 - это общий ток в цепи 1 балл

3) Записано правильное выражение для
$$I_1 = \frac{U_0}{R_0}$$
 1 балл

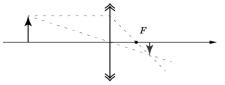
4) Записано правильное выражение для R_{01} 1 балл

5) Записано правильное выражение для R_{02} 2 балла

6) Указана правильная связь $R_{01} = \sqrt{2} \; R_{02}$ 2 балла

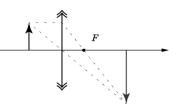
7) Получено правильное отношение R_2/R_1 2 балла

Примечания:

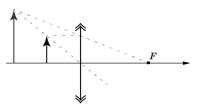

- 1) Правильное решение неавторским способом оценивается полным баллом.
- 2) Если в решении отсутствует отдельно какой-то из промежуточных критериев, но его выполнение подразумевается в дальнейшем ходе рассуждений, то этот пункт засчитывается в полном объёме.
- 3) Численный ответ может быть не доведён до $\sqrt{2}$, например, $\frac{R_2}{R_1} = \frac{\sqrt{2}-1}{1-\sqrt{2}/2}$.

За этот ответ должен ставиться полный балл.

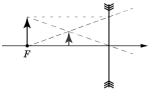
9-4. Линзы. Тонкие линзы могут создавать изображения. Покажите на рисунке систему, состоящую из одной тонкой линзы и стрелки, перпендикулярной главной оптической оси линзы, в которой изображение предмета отличается от него ровно в два раза. Покажите на рисунке, как получается изображение. Рассмотрите все возможные случаи. Дайте в каждом случае характеристику изображения (перевёрнутое или прямое, действительное или мнимое, увеличенное или уменьшенное).


Возможное решение.

1. Сделан верный рисунок для собирающей линзы с действительным, уменьшенным, перевёрнутым изображением (1 балл).


2. Указаны верно хотя бы две характеристики изображения (1 балл).

3. Сделан верный рисунок для собирающей линзы с действительным, увеличенным, перевёрнутым изображением (1 балл).


4. Указаны верно хотя бы две характеристики изображения (1 балл).

5. Сделан верный рисунок для собирающей линзы с мнимым, увеличенным, прямым изображением (2 балла).

6. Указаны верно хотя бы две характеристики изображения (1 балл).

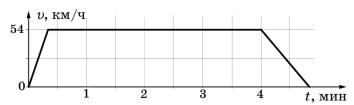
7. Сделан верный рисунок для рассеивающей линзы с мнимым, уменьшенным, прямым изображением (2 балла).

8. Указаны верно хотя бы две характеристики изображения (1 балл).

Критерии оценивания.

За каждый правильный случай ставится 2,5 балла:

1) Правильный рисунок

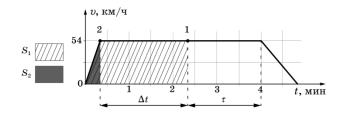

1 балл

2) Правильно указаны характеристики изображения

3×0,5 балла

9-5. В метро.

Поезда метро движутся между соседними станциями следующим образом: сначала разгоняются в течение времени $t_1=20$ с, затем движутся с постоянной скоростью $\upsilon_0=54$ км/ч, затем тормозят. Время от начала движения до начала торможения $t_2=4$ мин. График зависимости скорости поезда υ от времени υ изображён на рисунке. Интервал движения между поездами $\Delta t=2$ мин. Длина состава υ = 160 м.



Рассмотрите движение двух следующих друг за другом поездов, и ответьте на вопрос:

- 1) Через какое время после начала движения **второго** поезда дистанция D между ними станет максимальной?
- 2) В течение какого промежутка времени эта дистанция будет сохраняться?
- 3) Чему равна максимальная дистанция D_{max} между поездами?
- 4) С каким ускорением a движутся поезда при разгоне?

Дистанция — расстояние между «хвостом» впереди идущего и «головой» следующего за ним поезда.

Решение и критерии оценивания.

1) /	Цистанция между і	поездами у	величивается,	пока v_1 ?	$> v_2$.	балл	
---	-----	--------------------------	------------	---------------	--------------	-----------	------	--

2)
$$\Delta t < (t_2 - t_1)$$
, поэтому $D = D_{\text{max}}$ при $v_1 = v_2 = v_0$.

3)
$$D = D_{\text{max}}$$
 при $t = t_1 = 20$ с. 1 балл

4) Поезда будут находиться на максимальной дистанции, пока первый поезд не начнет тормозить. 1 балл

5)
$$D = D_{\text{max}}$$
 в течение времени $\tau = (t_2 - t_1) - \Delta t = 1$ мин 40 с. 1 балл

6) Путь, который проходит поезд пропорциональна площади под графиком v(t). 1 балл

7) Разность пройденных путей при максимальной дистанции $\Delta S = S_1 - S_2 = v_0 \cdot \Delta t = 1800 \text{ м}.$ 2 балла

8) Максимальная дистанция между поездами
$$D_{\text{max}} = \Delta S - L = 1640 \text{ м}.$$
 1 балл

9) Ускорение поездов при разгоне $a = v_0/t_1 = 0.75 \text{ м/c}^2$.