Задача А. Новый офис

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Одна крупная компания открывает новый большой офис. Как известно, открытие офиса связано с большим количеством трудностей. Системный администратор Олег решает задачу предоставления сотрудникам проводного доступа в интернет.

У Олега есть бесконечное количество проводов, но, к сожалению, в новом офисе есть только один разъём от провайдера для подключения интернета. Однако в распоряжении Олега имеется несколько разветвителей. Разветвитель имеет один входной разъём и от одного до трех выходных разъёмов. В разъем от провайдера можно подключить или один компьютер или входной разъем одного разветвителя. В каждый выходной разъем разветвителя может быть подключен или один компьютер или другой разветвитель. Количество разветвителей в цепи подключений не органичено.

Всего в офисе есть N компьютеров, которые необходимо подключить к интернету. В распоряжении Олега имеется A разветвителей с одним выходным разъёмом, B разветвителей с двумя выходными разъёмами и C разветвителей с тремя выходными разъёмами.

Напишите программу, определяющую максимальное число компьютеров в офисе, к которым можно провести проводной интернет.

Формат входных данных

В первой строке вводится натуральное число N (1 $\leq N \leq$ 100) — количество компьютеров в новом офисе.

Во второй строке вводится натуральное число A ($1 \leqslant A \leqslant 100$) — количество разветвителей с одним выходным разъёмом.

В третьей строке вводится натуральное число B ($1 \leqslant B \leqslant 100$) — количество разветвителей с двумя выходными разъёмами.

В четвёртой строке вводится натуральное число C ($1 \leqslant C \leqslant 100$) — количество разветвителей с тремя выходным разъёмами.

Формат выходных данных

Необходимо вывести одно натуральное число – максимальное количество компьютеров, к которым можно подвести проводной доступ в интернет.

Примеры

стандартный ввод	стандартный вывод
10	5
1	
2	
1	
3	3
2	
5	
4	

Замечание

В первом примере в офисе всего 10 компьютеров. У Олега есть один разветвитель с одним выходным разъёмом, два разветвителя с двумя выходными разъёмами и один разветвитель с тремя. Олег может подключить разветвитель с тремя выходными разъёмами к разъёму от провайдера интернета в офисе. Далее к этому разветвителю можно подключить все остальные разветвители. Таким образом, максимально можно подключить к интернету 5 компьютеров.

Во втором примере ко всем трем компьютерам можно предоставить доступ в интернет.

Задача В. Восстанови числа

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Эта задача с открытыми тестами. Ее решением является набор ответов, а не программа на языке программирования. Тесты указаны в самом условии, от вас требуется лишь ввести ответы на них в тестирующую систему.

Ваня и Дима играют в игру. Ваня загадывает 3 целых числа a,b,c. После чего Ваня выписывает на листочек **в случайном порядке** четыре числа равные a+b,b+c,c+a и a+b+c. Обозначим числа, записанные на листике, как X,Y,Z,T. После этого Ваня передает этот листочек Диме и предлагает отгадать числа a,b,c.

По заданным четырем числам X,Y,Z,T напишите загаданные Ваней числа a,b,c.

Формат выходных данных

Напишите три целых числа, загаданных Ваней числа, в любом порядке через пробел.

Примеры

стандартный ввод	стандартный вывод
9 9 11 4	2 2 7
37 44 4 26	-7 33 11
30 30 50 40	20 20 10
150 59 139 102	91 11 48
0 68 -40 -28	-68 40 28
2489 1521 1557 1900	968 932 589
-18405 -17235 -25733 -15826	-7328 -8498 -9907
42685 -15021 -49407 -23320	-57706 34386 8299
10253972 10684006 20177686 19417394	9923714 9493680 760292
-1688238 -346670 -373786 -1204347	483891 -857677 -830561

Замечание

- Tect M1: X = 9, Y = 9, Z = 11, T = 4;
- Tect M2: X = 1, Y = -4, Z = 1, T = 5;
- Tect M3: X = 30, Y = 30, Z = 50, T = 40;
- Tect JP4: X = 150, Y = 59, Z = 139, T = 102:
- Tect JP5: X = 0, Y = 68, Z = -40, T = -28:
- Tect JF6: X = 2489, Y = 1521, Z = 1557, T = 1900;
- Tect M7: X = -18405, Y = -17235, Z = -25733, T = -15826;
- Tect \$8: $X=42685,\,Y=-15021,\,Z=-49407,\,T=-23320;$
- Tect M9: X = 10253972, Y = 10684006, Z = 20177686, T = 19417394;
- Tect M10: X = -1688238, Y = -346670, Z = -373786, T = -1204347.

Задача С. Игра

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Петя и Маша решили сыграть в игру. Изначально у Пети и Маши N и M яблок соответственно. Первым ходом Петя передает одно яблоко Маше. На второй ход Маша отдает Пете 2 яблока. Далее Петя передает Маше 3 яблока, и игра продолжается до тех пор, пока у одного из игроков не заканчиваются яблоки. Формально, на шаге i+1 получатель яблок из шага i передает второму игроку число яблок, равное переданному числу яблок на шаге i и еще одно.

Напишите программу, которая по заданным N и M вычислит через сколько шагов игра Пети и Маши закончится.

Формат входных данных

В первой строке подается число N ($1 \le N \le 10^6$) — начальное число яблок у Пети. Во второй строке подается число M ($1 \le N \le 10^6$) — начальное число яблок у Маши.

Формат выходных данных

Выведите одно число — количество ходов, через которое закончится игра.

Примеры

стандартный ввод	стандартный вывод
1	1
1	
2	3
3	

Замечание

В первом примере игра закончится после того, как Петя передаст 1 яблоко Маше и у него останется 0 яблок.

Во втором примере рассмотрим последовательность ходов:

После первого хода: у Пети -1 яблоко, у Маши -4.

После второго: у Пети -3 яблока, у Маши -2.

После третьего: у Пети -0 яблок, у Маши -5.

Игра на этом заканчивается, так как у Пети больше не осталось яблок.

Задача D. Телепорт

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вчера на день рождения Максиму подарили телепорт (устройство для телепортации). Сегодня Максим хочет опробовать его по дороге в школу.

Улицу, на которой живет Максим, можно представить в виде координатной прямой, на которой дом Максима имеет координату A метров, школа -B метров, а скорость передвижения Максима равна 1 м/c. Телепорт открывает портал в любой точке и моментально перемещает пользователя на расстояние ровно C метров от текущего положения пользователя в сторону школы. Однако телепорт можно использовать только один раз.

Максим хочет как можно быстрее оказаться в школе. Максиму не обязательно использовать телепорт, но он может это сделать, если это ускоряет путь.

Напишите программу, которая по заданным числам A, B и C, определит через какое наименьшее количество секунд Максим сможет оказаться в школе.

Формат входных данных

В единственной строке входных данных вводятся 3 целых числа A, B и C ($|A|,|B|\leqslant 10^9,0\leqslant C\leqslant 10^9$) — координаты дома, школы и расстояние, на которое перемещает телепорт соответственно.

Формат выходных данных

Выведите единственное целое число — наименьшее количество секунд, через которое Максим сможет оказаться в школе (ответ всегда является целым количеством секунд).

Примеры

стандартный ввод	стандартный вывод
1 7 4	2
-5 5 10	0
1 10 100	9

Замечание

В первом тесте возможный путь Максима выглядит так: он за 1 секунду доходит из точки 1 в точку 2, далее телепортируется в точку 6 и за 1 секунду доходит то школы.

Во втором тесте он может сразу телепортироваться из дома в школу.

В третьем тесте быстрее всего дойти до школы не используя телепорт.