Задание 8.1. Иглоукалывание (из 20 баллов). При медленном движении поршня шприца масса m капельки жидкости, отрывающейся от кончика иглы (при вертикальном положении шприца (см. рис.)), прямо пропорциональна внутреннему диаметру иглы d (m = kd). Коэффициент пропорциональности k зависит от типа жидкости. (Для замедления скорости вытекания капель необходимо все измерения проводить со шприцом, в который вставлен поршень). Легкое нажатие на поршень позволяет реализовать контролируемый режим поштучного вытекания капель.

Задание. В вашем распоряжении имеется три иглы с внутренними диаметрами

Калибр	Внутренний	енний Цвет канюли	
	диаметр, мм		
G21	0,51	Зелёный	
G22	0,41	Темно-серый	
G23	0,34	Голубой	

Различить иглы можно по цвету наконечника или их внешним диаметрам. Иглы на шприце можно менять.

- 1. Исследуйте зависимость массы m капли воды от диаметра иглы d. Опишите метод определения массы капли.
- 2. Постройте график полученной зависимости. Имейте в виду, что точка d=0, m=0 тоже принадлежит вашему графику.
- 3. С помощью графика определите значение k.
- 4. Определите массу m_x капли, которая отрывалась бы от иглы с внутренним диаметром $d_x = 0.20$ мм.

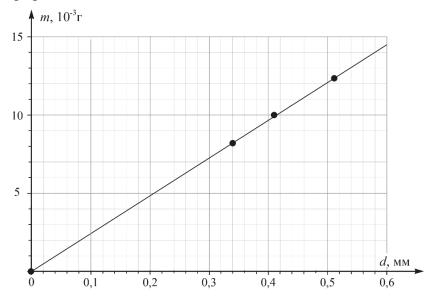
Приборы и оборудование. Шприц 5 мл; три иглы в защитных футлярах; стакан с водой (плотность воды $\rho = 1,00 \cdot 10^3$ кг/м³); 1 лист миллиметровой бумаги формата A4 (для построения графика); салфетки для поддержания чистоты на рабочем месте.

Внимание! Будьте крайне осторожны при работе с иглами. Они острые и вы можете себя травмировать!

После окончания работы помещайте иглу в защитный футляр!

8 класс

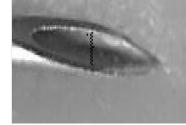
8.1. Возможное решение (из 20 баллов). Наберем в шприц воды. Наденем на его наконечник одну из игл. Расположим иглу вертикально над стаканом. Начнем медленно нажимать на шток поршня, подсчитывая число капель, соответствующее освободившемуся объему шприца, например, 1 мл. По результатам этих измерений определим массу одной капли.


Измерения для каждой иглы следует провести многократно и результаты усреднить. Если в какой-то момент времени давление на поршень превысит необходимое, то вместо капель из иглы выльется струйка жидкости. В этом случае измерение придется начать сначала. Зная объем вытекшей воды и её плотность, найдём массу соответствующего числа капель, а по этим данным определим среднюю массу капли для иглы данного диаметра.

Результаты авторских измерений представлены в табл.1.

1.

№	d, mm	Число	Масса М капель, г	m средняя, 10^{-2} Г
		капель п		
1	0,00	0	0	0,00
2	0,34	122	1,00	0,82
3	0,41	100	1,00	1,00
4	0.51	82	1.00	1.22


2. Строим график зависимость m(d).

- 3. Из графика находим $k = \frac{m}{d} = 2, 4 \cdot 10^1 \frac{\Gamma}{M} = 2, 4 \cdot 10^{-2} \frac{K\Gamma}{M}$.
- 4. Для иглы с внутренним диаметром $d_x = 0.20$ мм масса капли $m_x = 4.8 \cdot 10^{-6}$ кг.

Примечание. Внутренний диаметр иглы может отличаться от тех размеров, которые

должны соответствовать калибрам, указанным в таблице. Например, при непосредственном измерении внутреннего диаметра иглы методом сканирования с разрешением 1200 пикселей на дюйм и подсчёта пикселей (см. фото), мы получили, что калибру G23 соответствует внутренний диаметр иглы в 380 мкм (что больше 340 мкм, указанных в таблице). На фотографии чёрный квадратик соответствует 1 пикселю.

No	Э-8.1. Критерии оценивания (из 20 баллов)		Баллы
1	Идея определения массы капли через объем и плотн	ость	2
2	Приведена таблица измерений. Объем V вытекше	ей из шприца воды не	6
	менее 1,0 мл		
	(если объем V меньше 1,0 мл, но больше 0,5 мл, то ставим 3 балла; если		
	объем менее 0,5 мл – то 1 балл.		
3	Культура построения графика		5
	- подписаны оси и указаны единицы измерения	1 балл	
	- равномерная и удобная шкала (1, 2, 5 мелких клето	DΚ	
	между соседними оцифрованными штрихами)	1 балл	
	- масштаб (график занимает более 60% поля листа)	1 балл	
	- верно нанесено все точки	1 балл	
	- проведена прямая линия	1 балл	
4	Из графика найден коэффициент k		5
	Попадание в диапазон ± 5%	4 балла	
	Попадание в диапазон ± 10%	2 балла	
	Попадание в диапазон ± 20%	1 балл	
	Указаны единицы измерения коэффициента <i>k</i>	1 балл	
5	Из графика найдена масса капли $m_{\rm x}$		2

Задание Э-8.2. Лови момент

Определите массу m и длину l однородного стержня, находящегося внутри трубки. Приведите вывод расчётных формул для определения m и l.

Приборы и оборудование. Весы электронные; линейка; трубка. Внутри трубки у её торца A, помеченного красной меткой (на фото метка слева), закреплен однородный пыж (длина и масса пыжа указываются дополнительно). Другой конец B трубки заделан изолентой. В трубке также находится стержень длиной l и массой m, который может в ней свободно перемещаться.

Внимание! 1) Снимать изоленту с торца трубки запрещено.

2) Спланируйте измерения так, чтобы минимизировать влияние неоднородности (изолента на торце B) на результат вычисления m.

Возможные решения. У автора задания длина пыжа z = 68 мм, а масса $\mu = 2,1$ г.

1) Измерим длину трубки: L = 400 мм. Конец трубки A, которого касается пыж, положим на весы. Другой конец B положим на край линейки. К этому же концу сместим стержень. С помощью линейки приподнимем трубку так, чтобы она заняла почти горизонтальное положение, касаясь концом A площадки весов. При этом показание весов $m_1 = 20.5$ г. Затем сместим стержень так, чтобы он упёрся в пыж. Теперь показание весов $m_2 = 29.6$ г. Применим для этих случаев правило моментов (сократив обе части уравнений на g):

(1)
$$m_1 L = M \frac{L}{2} + m \frac{l}{2} + \mu \left(L - \frac{z}{2} \right);$$

(2) $m_2 L = M \frac{L}{2} + m \left(L - z - \frac{l}{2} \right) + \mu \left(L - \frac{z}{2} \right).$
(3) $M = M_0 - m - \mu,$

где $M_0 = (M + m + \mu) = 51,6$ г — масса трубки со стержнем и пыжом, определенная простым взвешиванием. Решая уравнения (1) - (3), получим:

(4)
$$m = \frac{L(M_0 + \mu - m_1 - m_2)}{z} - \mu = 19.1 \,\text{r.}$$

(5) $l = \frac{2m_1L - \mu(2L - z) - ML}{m} = \frac{(2m_1 - 2\mu - M)L + \mu z}{m} \approx 141 \,\text{mm.}$

Реальная масса стержня m = 18,5 г.

При таком проведении эксперимента вращающий момент изоленты пренебрежимо мал.

No	Э-8.2. Критерии оценивания (из 20 баллов)	Баллы
1	Измерена масса M_0 трубки с содержимым	1
2	Измерена длина L трубки	1
3	Измерена масса m_1	2
	За однократное измерение 1 балл	
4	Измерена масса т2	2
	За однократное измерение 1 балл	
5	Уравнение (1)	2
6	Уравнение (2)	2
7	Уравнение (3) или найдена масса трубки	1
8	Из решения системы уравнений (1) – (3), получено уравнение (4)	2
9	Получен численный ответ с погрешностью не более 10%	2
10	Получен численный ответ с погрешностью не более 25% ставим 1 балл	
11	Получена формула (5) или аналогичная	3
12	Получен численный ответ с погрешностью не более 10%	2
13	Получен численный ответ с погрешностью не более 25% ставим 1 балл	

2) Можно установить конец трубки A на ребро линейки, а конец B положить на весы. Написав уравнения аналогичные (1)-(3), получим: $m\approx 22,5\,$ г. Большее отличие от реального значения массы в этом случае связано с тем, что неучтенная масса заглушки на конце B создаёт вращательный момент, плечо которого равно L, в то время как в предыдущем случае это плечо равно нулю, поэтому такой метод оценивается из **18 баллов**.

№	Э-8.2. Критерии оценивания (из 18 баллов)	Баллы
1	Измерена масса M_0 трубки с содержимым	1
2	Измерена длина L трубки	1
3	Измерена масса m_1	1
	За однократное измерение 0 баллов	
4	Измерена масса т2	1
	За однократное измерение 0 баллов	
5	Уравнение (1)	2
6	Уравнение (2)	2
7	Уравнение (3) или найдена масса трубки	1
8	Из решения системы уравнений (1) – (3), получено уравнение (4)	2
9	Получен численный ответ с погрешностью не более 10%	2
10	Получен численный ответ с погрешностью не более 25% ставим 1 балл	
11	Получена формула (5) или аналогичная	3
12	Получен численный ответ с погрешностью не более 10%	2
13	Получен численный ответ с погрешностью не более 25% ставим 1 балл	

3) Можно один раз установить конец трубки A на ребро линейки, а конец B положить на весы. Затем, поменять местами концы трубки, сохраняя в ней положение стержня. В этом случае мы имеем промежуточный результат между случаем 1 и 2, поэтому такой метод оценивается из **19 баллов**.

No	Э-8.2. Критерии оценивания (из 19 баллов)	Баллы
1	Измерена масса M_0 трубки с содержимым	1
2	Измерена длина L трубки	1
3	Измерена масса т	1 или 2
	За однократное измерение 0 или 1 балл	
4	Измерена масса т2	2 или 1
	За однократное измерение 1 или 0 баллов	
5	Уравнение (1)	2
6	Уравнение (2)	2
7	Уравнение (3) или найдена масса трубки	1
8	Из решения системы уравнений (1) – (3), получено уравнение (4)	2
9	Получен численный ответ с погрешностью не более 10%	2
10	Получен численный ответ с погрешностью не более 25% ставим 1 балл	
11	Получена формула (5) или аналогичная	3
12	Получен численный ответ с погрешностью не более 10%	2
13	Получен численный ответ с погрешностью не более 25% ставим 1 балл	